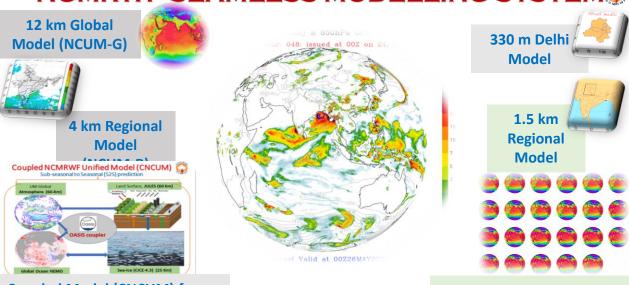
Modelling activities at NCMRWF for weather and climate forecast in mountain region

THE 3rd SESSION OF THE THIRD POLE CLIMATE FORUM

X E DGG MEMMODIC MA

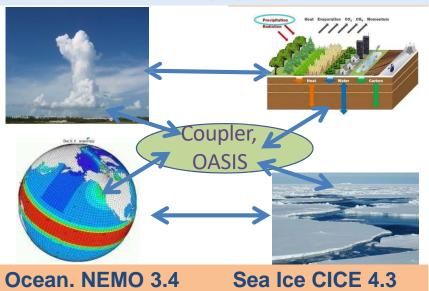
MEETING OF THE THIRD POLE RCC-NETWORK TASK TEAM
3 – 5 June 2025 Mahika Hall
Ministry of Earth Sciences (MoES) Prithvi Bhawan, Lodi Road New Delhi, India

Modelling and Data Assimilation Centre



India's First Supercomputer for Weather Forecasting: 1989

NCMRWF SEAMLESS MODELLING SYSTEM®



Coupled Model (CNCUM) for S2S

Ensemble Prediction System

Components of NCMRWF Global Coupled Modelling System

NCMRWF Coupled Modelling System

Ensemble Prediction System based on GloSea5 system of UK Met Office

- The NCMRWF Global Coupled Model Version 2.0 (GC2)
 - Global Atmosphere 6.0 (GA6.0)
 - Global Land 6.0 (GL6.0)
 - Global Ocean 5.0 (GO5.0)
 - Global Sea Ice 6.0 (GSI6.0)
- GloSea5/GC2 uses the N216 version (0.8 degrees in latitude and 0.5 degrees in longitude).
- Model has approx. 60 km horizontal resolution for the atmosphere.
- Resolution is approximately 25 km/ORCA0.25 grid (0.25 degrees) for the ocean.
- The vertical resolution is 85 levels for the atmosphere and 75 levels for the ocean.
- Started in 2019

Operational for Seasonal to Sub-seasonal (S2S) prediction

- Weekly extended range/Multi-week (4-week/1-month forecast): 16 ensemble members
- Issued every Thursday of the week.
- Monthly runs to issue Seasonal (3 to 9 months) forecast: 55 ensemble members,
- Issued on 23rd day of the month.
- Ensembles are created using time lag and Stochastic kinetic energy backscatter schemes (SKEBSs)

Users (Forecasts shared with) are:

- ✓ Renewable Energy companies
- ✓ IMD/NCPOR/Indian Navy/INCOIS/DRDO
- ✓ BIMSTEC countries

NCMRWF Coupled Model: (NCUM+JULES+NEMO+CICE)

(60 km Atmosphere & 25 km Ocean/Sea-Ice)

Medium Range Extended Range Long Range (Seasonal Prediction)

(Course Resolution (Multi-Week NWP)

Prediction) Forecast Freq.= Daily once Forecast Freq. = Weekly once

Length of forecast: 15 days Length of forecast: 4 weeks

deterministic forecast prediction system Issued daily at 00Z

Issued every Thursday

Single model 16-member ensemble 55-member ensemble prediction system

Issued on 23rd Day of the

month Seasonal and month by

Forecast Freq.= Monthly once

Length of forecast: 3-6 months

Ocean State Forecasting Week-by-week anomalies (OSF), Tropical Cyclone and full fields and monthly month full field and Heat Potential (TCHP) and IOP's mean anomalies are used anomalies

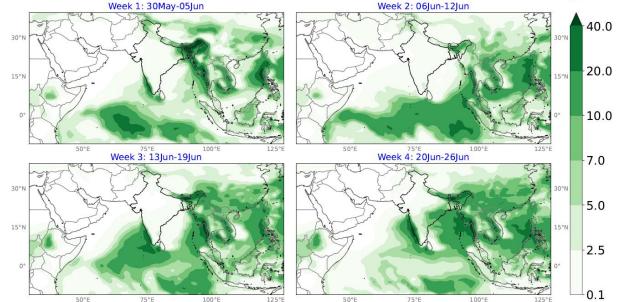
separately carried out, which generated 23 Years (1993-2015) model runs for

calculating model climatology and study the seasonality and annual cycle.

Model Products (Forecasts/Hindcast)

- ✓ Hindcast: 1993-2015
- ✓ Forecast 2019 onwards
- ✓ Regular Ocean products: NEMO/ORCA25
- ✓ Regular Atmospheric Products: UM-> rain, snow, winds etc...
- √ Sea-Ice Forecasts from C-ICE

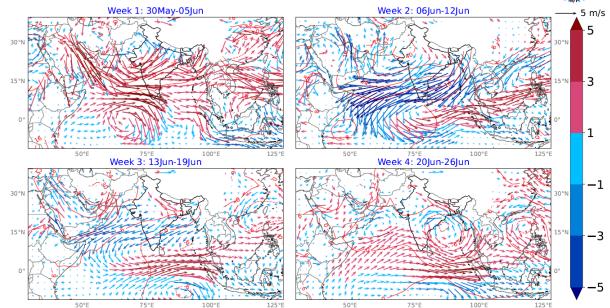
For More Please see the report: https://nwp.nemrwf.gov.in/publication/NCUM_S2S_TR_May2019.pdf


Extended Range Forecasts NCMRWF Coupled Model Runs

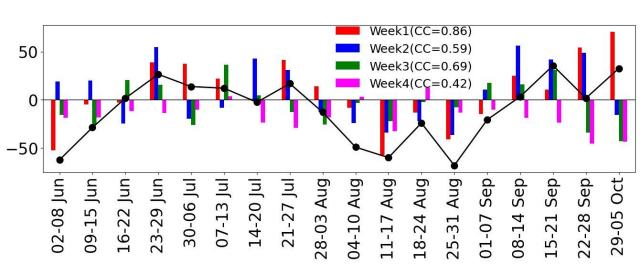
Issued on 29 May 2025

- NCMRWF Coupled Model Runs with 60 km NCUM and 25 km NEMO
- Weekly Anomalies during 30 May 2025-26 Jun 2025
- Model Climatology 23 years. Hindcast data used (1993-2015) from 6 members
- This Forecast is from 16 ensemble members with IC: 25 May 2025-28 May 2025
- Plots show week-by-week anomalies and full fields


NCMRWF Extended Range Forecasts: 20250529 **Precipitation (mm/day)**

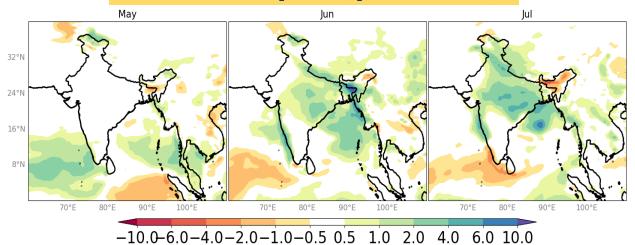


NCMRWF Extended Range Forecasts: 20250529 Precipitation Anomaly (mm/day)



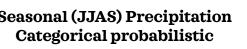
NCMRWF Extended Range Forecasts: 20250529 850hPa GH(m) & Winds Anomaly(m/s)

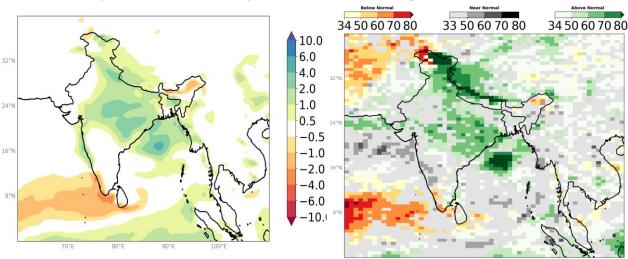
2024 Monsoon Season Rainfall Skills


Forecast Issued: 23rd April 2025 April 2025 Initial condition (IC)

- Coupled model: 60 km Atmosphere (NCUM), 25 km Ocean (NEMO)
- 55 members ensemble forecast.
- Start dates: 12th to 22nd of the month. 5 members per start date
- Number of hindcast members: 6 member
- Period of hindcast: 23 Years (1993-2015)
- Hindcasts are used to compute climatology and to define terciles used in probabilistic forecasts

Monthly Mean Precipitation Anomaly Forecast (mm/day)

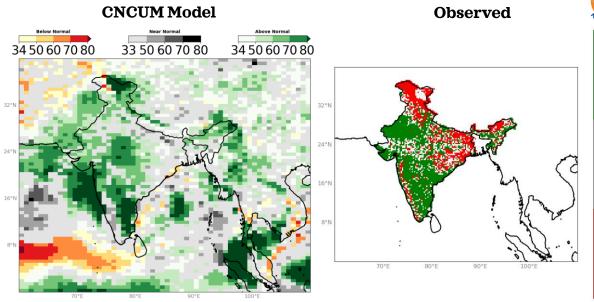



Forecast Issued: 23rd April 2025 (April Initial Condition)

Seasonal (JJAS) Mean Precipitation Anomaly Forecast (mm/day)

Seasonal (JJAS) Precipitation Categorical probabilistic

Forecast Issued: 23rd April 2025, (IC=APR2025)

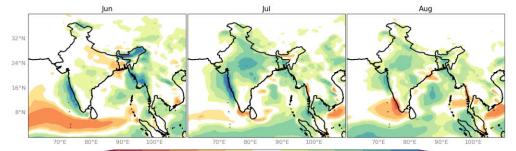


Seasonal Verification 2024 Monsoon for May IC

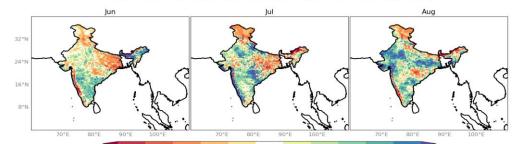
Coupled model: 60 km Atmosphere (NCUM), 25 km Ocean (NEMO)

Start dates: 12th to 21st of May

5 members per start date



AN


NN

BN

-10.0-6.0-4.0-2.0-1.0-0.5 0.5 1.0 2.0 4.0 6.0 10.0

-10.0 - 6.0 - 4.0 - 2.0 - 1.0 - 0.5 0.5 1.0 2.0 4.0 6.0 10.0

Snow Initialization for NCMRWF S2S Prediction System

Fields read from input dump (Analysis) in forecast model

Sl. No.	Field Name
1	Snow Amount Over Land Aft Tstp Kg/M2

Fields read from ancillary files (Climatology)

Sl. No.	Field Name
\$ANCILDIR_	N216/orca025/general_land/GlobAlbedo/v2/qrclim.land
1	Observed/Climatology Snow-Free Surf Sw Albedo

Following Fields set to 0

Sl No.	Field Name
1	Snow Amount Over Sea-ice Aft Ts Kg/M2
2	Large Scale Snow Rate: Cpl Kg/M2/S
3	Convective Snow Rate: Cpl Kg/M2/S
4	Snow Beneath Canopy Kg/M2
5	Sea Ice Snow Depth By Categories

	Snow Amount Over Land Aft Istp Kg/M2 from Atmospheric Model	Daily	11	Top Snow Melt (cm/day) From CICE model	Daily
1	Total Snowfall Rate: Ls+Conv Kg/M2/S from Atmospheric Model	Daily	12	Total Snowfall Rate: Ls+Conv Kg/M2/S from Atmospheric Model	Daily
			13	Convective Snowfall Rate	Daily

3

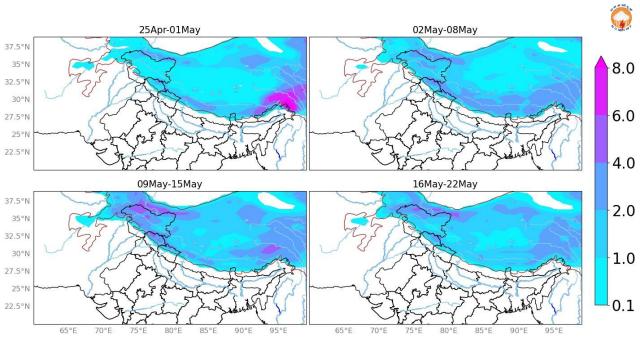
6

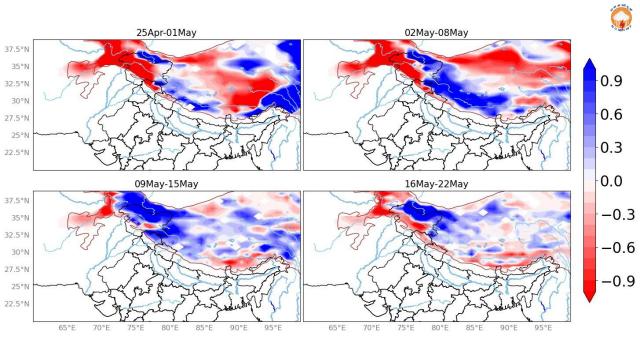
CICE Model

Ls+Conv Kg/M2/S from	Daily	Kg/M2/S from Atmospheric Model			
Atmospheric Model		13	Convective Snowfall Rate	Daily	
Convective Snowfall Rate	Daily		Kg/M2/S from Atmospheric Model		
Kg/M2/S from Atmospheric Model		14	Large Scale Snowfall Rate Kg/M2/S from Atmospheric Model	Daily	

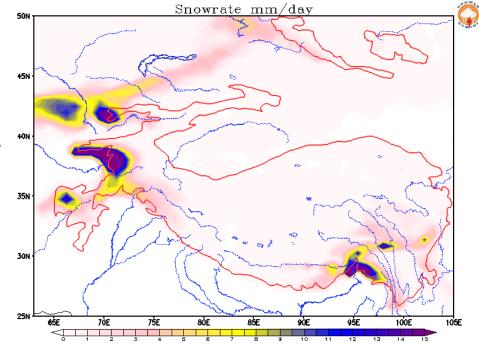
,	Daily	Kg/M2/S from Atmospheric Model					
ic		14 Large Scale Snowfall Rate Kg/M2/S from Atmospheric Model	Daily				
	Daily	15 Snow Mass After Hydrology	Dailv				
, 		11 Top Snow Melt (cm/day) From	Daily				
gу	Monthly	OLOT					

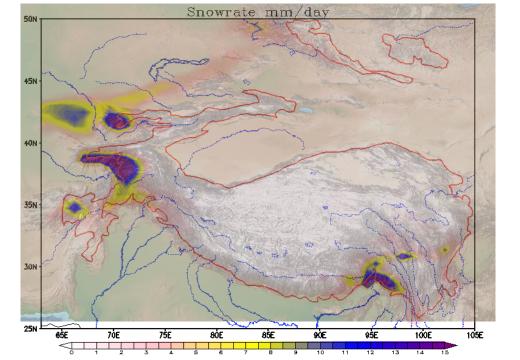
	110001						
		Daily Monthly	15 11	Snow Mass After I Top Snow Melt (cr CICE model		Daily Daily	
	Model		12	Total Snowfall Ra		Daily	
	Snow Thickness in m (Cell	12 hr.		Kg/M2/S from Atmospheric			


Snow Mass After Hydrology


Daily

Kg/M2 from Atmospheric		CICE model			
Model		12 Total Snowfall Rate: Ls+Conv Daily			
Snow Thickness in m (Cell	12 hr.	Kg/M2/S from Atmospheric Model			
Average) from Ocean Model		13 Convective Snowfall Rate Daily			
Grid Cell Mean Snow I Thickness from CICE Model	Daily	Kg/M2/S from Atmospheric Model			
		14 Large Scale Snowfall Rate Daily			


8	Grid Cell Mean Snow	Daily Rg/M2/S from Atmos]		Kg/M2/S from Atmospheric Model	
	Thickness from CICE Model	v	14	Large Scale Snowfall Rate	Daily
9	Snow-Ice Formation from	Daily		Kg/M2/S from Atmospheric Model	


15

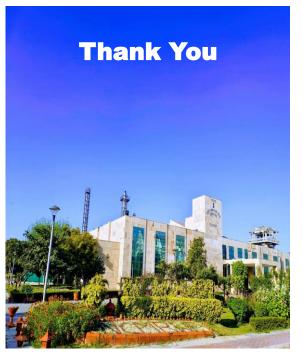
Sample Forecast from 1member of NCMRWF-ERPS

Summary 1. NCMRWF can provide model guidance over the Third Pole region from Days to

Season.

- 2. Seamless Modelling System operational at NCMRWF provides Model Guidance to India Met. Department using its regional, global and coupled (Global) Prediction system.
- resolution on Medium range time scale.
 4. 16-member Global Extended Range Prediction System (ERPS) can facilitate ocean and

3.23-member Global Ensemble Prediction System (NEPS) is operational at 12km


sea-ice products at 25 km resolution and Atmospheric products at 60 km grid resolution.

5. Experimental Seasonal scale forecast every month is started from 2019 onwards. This system is using 55-member ensemble seasonal prediction system.

Way Forward

- Coupled Global NWP (10 km) Regional Coupled system 1.5 km (Include details of Regional Seas, LS interactions, waves)
 Improving Northern Bay Coupled Process Improve Real-Time Observations
- Global Coupled Data Assimilation
- Higher Resolution Global Coupled system for S2S (with more ensemble numbers)
- Development of applications based on S2S probabilistic prediction

Akhilesh Mishra

E-mail: akhilesh.m@gov.in

In-Charge, BIMSTEC Centre for Weather & Climate (BCWC)

Lead: Coupled Modelling Team

The National Centre for Medium Range Weather Forecasting (NCMRWF)

Ministry of Earth Sciences, Government of India