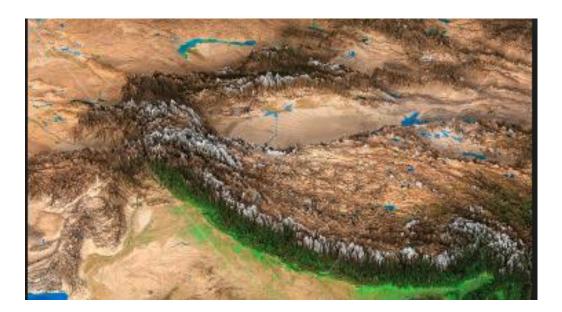

TPCF-3 and meeting of the TPRCC-Network Task Team, New Delhi

Flood-Causing Precipitation Extremes in the Himalayan Region: Science-Based Insights for Policy Action

Ayantika Dey Choudhury

Centre for Climate Change Research

Indian Institute of Tropical Meteorology, India



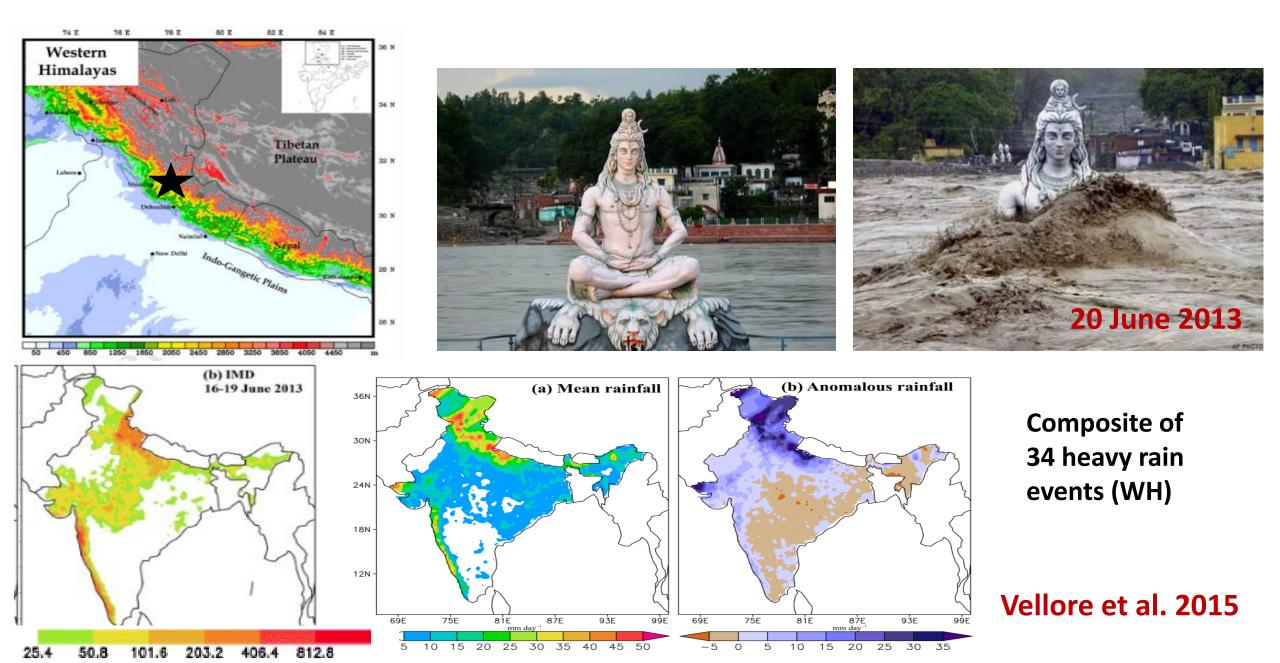
Why Focus on Himalayan Flood Causing Extremes?

The Himalayas stretch between eight countries across Asia, is the world's tallest mountain range.

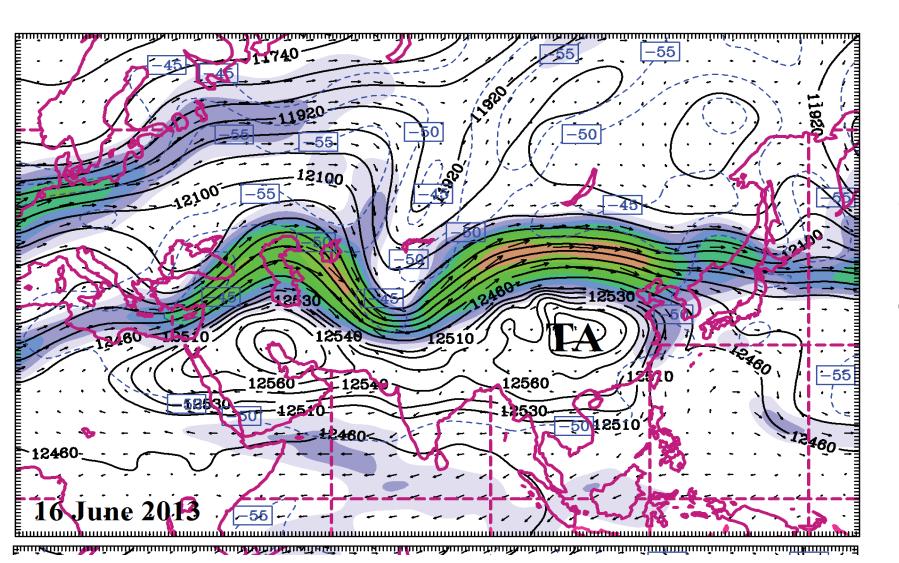
This region is the source of the 10 major river systems that provide irrigation, power and drinking water for over 1.5 billion people in Asia – nearly 20% of the world's population.

The region is increasingly vulnerable to flood-causing precipitation extremes, due to the diverse geographical settings:

Elevated Tibetan Plateau, glaciated high mountains, dry continental regions to the north and west, heavily precipitating monsoon systems to the south, bordered by the Indian and Pacific Oceans

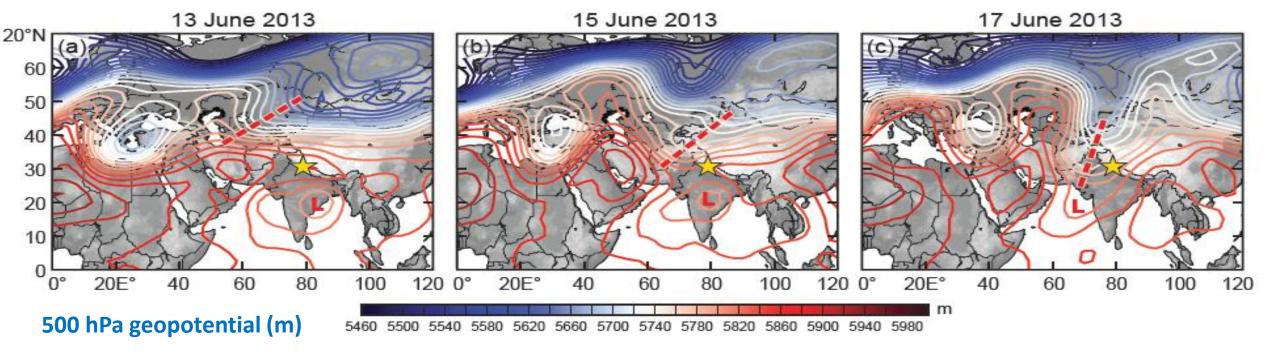

Climate change intensifies the vulnerability through warming, altered precipitation patterns, and enhanced variability.

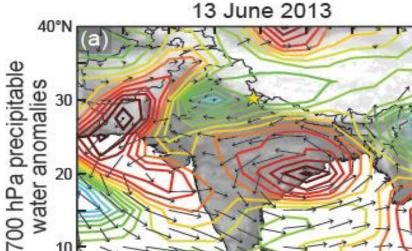
Recent disasters (eg: 2022 Pakistan floods) expose the limitations of current understanding, planning, and response systems.


Recent Precipitation Extremes - Causes, teleconnections, feedbacks, climate change signal, ...

- June 2013, July 2023 Uttarakhand event: Heavy rainfall and floods over Northwest Himalayas – Monsoon and Mid-latitude interactions, moisture transport from north Indian ocean
- July-August 2022, 2010: Widespread and heavy rainfall and devastating floods in Upper Indus basin.
- Leh 2010 flash flood: Mesoscale convective systems over the high terrain
- Gaps in our understanding and Recommendations

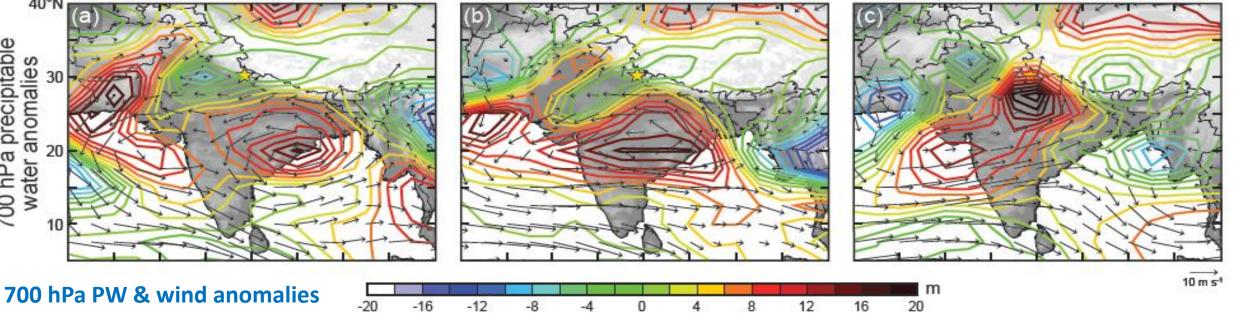
2013 Uttarakhand Floods

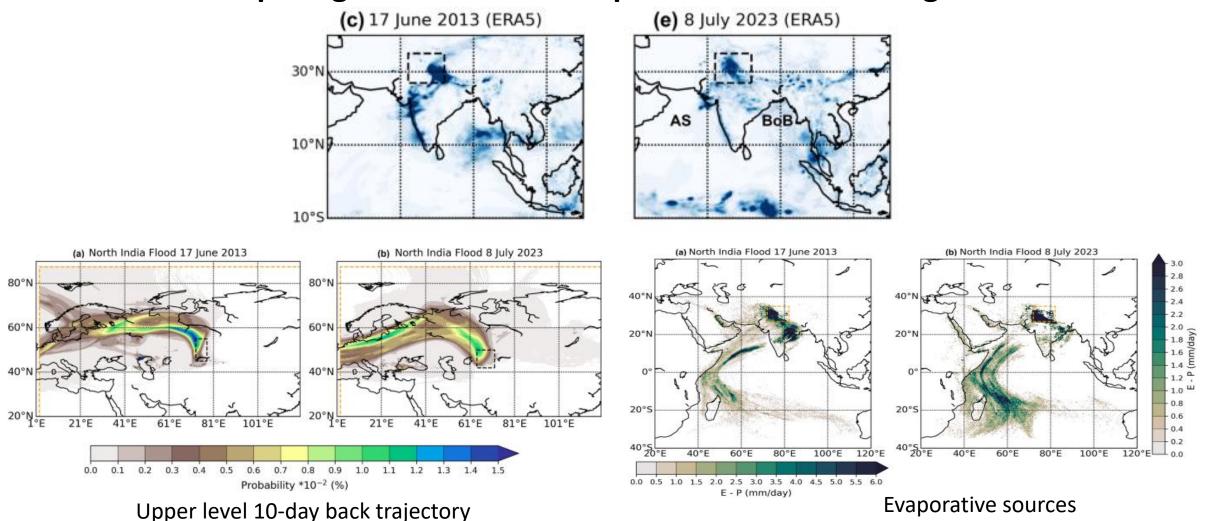

Monsoon-extratropical circulation interactions in Himalayan extreme rainfall



16-20 June 2013

Flood producing extreme precipitation (eg., 16-20 June 2013 and many other cases) over NW Himalayas: Interaction between Monsoon & Extra-Tropical circulation

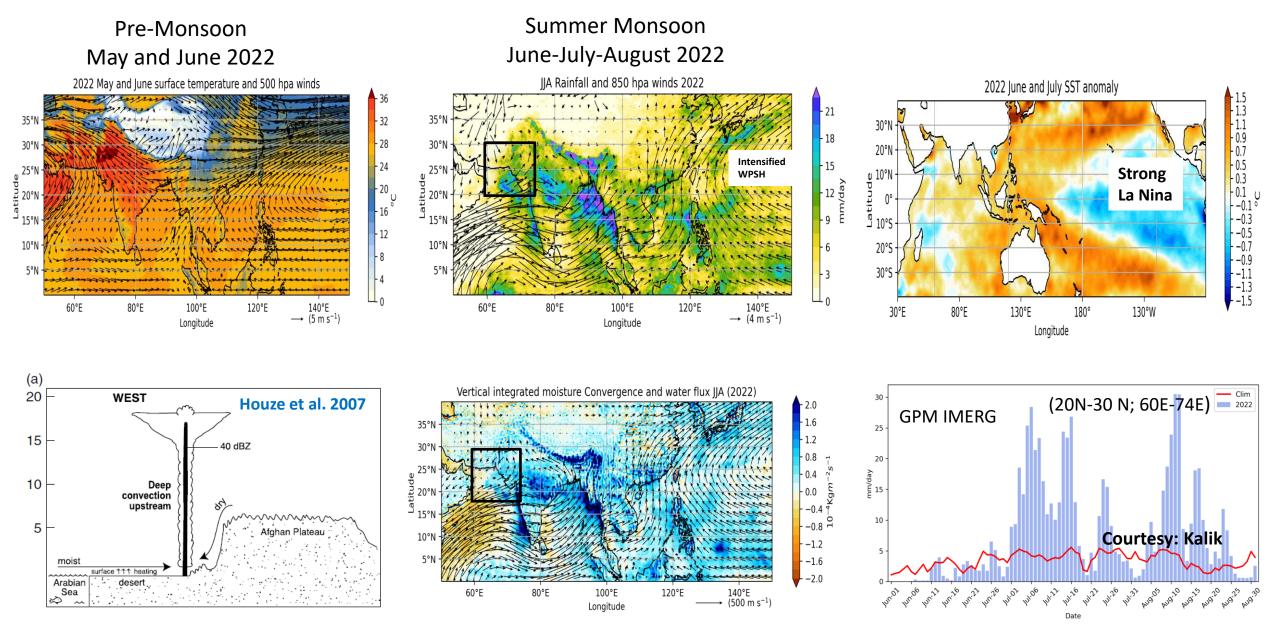

Vellore et al. 2015


15 June 2013

17 June 2013

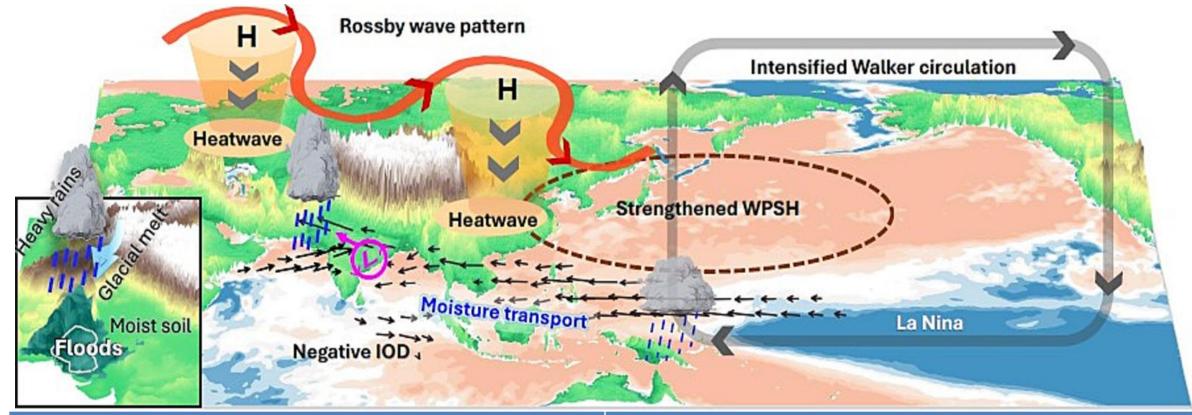
	Station name	Latitude (°N), longitude (°E)	Elevation (m)	Rainfall (mm)	Uttarakhand	
	Debradan	30.32, 78.05	667	370	32°N-61	100
	Purola	30.87, 78.08	1503	410	Tiboton Platoau	
	Haridwar	29.92, 78.12	276	220	Himachal S Fiberan Flateau	
	Uttarkashi	30.73, 78.43	1297	210	Pradesh 52	250
	Tehm	30.37, 78.43	1672	170		200
	Mussorie	30.46, 78.07	1836	150		
	Devprayag	30.14, 78.60	785	160	31°N	0020020
,	Roorkee	29.84, 77.92	254	150	Kedarnath 44	400
	Kirtinagar	30.21, 78.75	748	100		
	Rudraprayag	30.28, 78.98	973	90	•Dehradun •Chamoli	
	Кагпартауас	30.26, 79.22	981	90		550
	Jolb erant	30.19, 78.18	553	224	^{30°N} (Uttarakhand	550
	Ranichauri	30.20, 78.52	1592	205		
	Rishikesh	30.11, 78.28	371	145		700
	Kalsi	30.53, 77.84	.558	391		700
	Srinagar	30.22, 78.77	688	133	Nainital	
	Mukteshwar	29.46, 79.66	2047	240	29°N- Nepal 18	050
	Kausaal	29.84, 79.60	1673	200	29°N-	850
	Haldwani	200.70.51	431	200	29°N- New Delhi 28°N- 28°N- 28°N- 10 10 10 10 10 10 10 10 10 10 10 10 10	
	Nainital	29.36,79.46	1747	180	Gange -	
	Champawat	29.34, 80.09	1650	100		000
	Pithoragarh	29.57, 80.23	1523	69	Clain	
	Almora	29.59, 79.65	1432	90	28°N-2	
	Matela	29.62, 79.62	1211	97		
	Pantnagar	29.02, 79.48	232	58	7	
	Ramnagar	29.39, 79.11	354	56		
	Ranikhet	29.64, 79.42	1700	43	77°E 78°E 79°E 80°E 81°E 82°E 83°E	
	Pati	29.40, 79.93	1520	206		
	Lohaghat	29.40, 80.09	1670	139	Observed 24 h presidint secure ulations (mm) and ing at 020	าก
	Sitarganj	28.93, 79.70	198		Observed 24-h precipitation accumulations (mm) ending at 030	JU
	Gangolihat	29.65, 80.04	1718	103	UTC 17 June 2012 avan the Utteral head region (see also Katel	~ +
	Bageshwar	29.83, 79.77	1020	160	UTC 17 June 2013 over the Uttarakhand region (see also Kotal o	ετ
	Joshimath	30.55, 79.57	2146	110	~ 1.2014 Denselling at ~ 1.201 Ca b)	
	Jakholi	30.39, 78.89	1539	110	al. 2014, Ranalkar et al., 2016a, b)	
	Chamoli	30.29, 79.56	2199	80		
	Tharali	30.07, 79.50	1458	170		
	Bharsar	30.05, 79.00	2247	122	Vellore et al. 2020	
	Dhanauri	29.93, 77.97	269	151		
	Mean			157.5		

Comparing events a decade apart over the same region



Southward movement of the subpolar jet stream creates a trough in the subtropical jet stream (both years)

Dey et al. 2025


- In 2013, inland moisture was transported by two LPS
- In 2023, evaporative sources near Madagascar and the western Indian Ocean were key contributors

2022 Indus Basin Floods : One of the worst disasters in recent years (Compounding extreme)

Drivers of the infamous 2022 Pakistan Floods

Krishnan et al 2025

Local Preconditioning:

Early heatwaves increased snowmelt and streamflow.
Low-pressure systems formed due to land-surface heating.
Warm Arabian Sea enhanced evaporation and moisture availability.

Large-Scale Climate Drivers:

•Triple-dip La Niña (2020–2022):

- Westward shift of Pacific Subtropical High
- Enhanced moisture transport into the Indus Basin

•Negative Indian Ocean Dipole (IOD):

• Strengthened monsoon currents from the Arabian Sea

Spatial and temporal compounding

A FLASH-FLOODING STORM AT THE STEEP EDGE OF HIGH TERRAIN Disaster in the Himalayas

ET KRISTEN L. RASHUSSEN AND ROBERT A. HOUSE JE

A lethal flash flood inundated a town when moist airflow from the lowlands invigorated a mesoscale storm moving off the Tibetan Plateau. Leh flash floods – 2010

The Disaster in Leh: Less than 1 week after the catastrophic slow-rise flooding of the Indus river in Pakistan in late July 2010, flooding of a different, more sudden type produced a disaster in the city of Leh, India, located 500 km to the east. The town of Leh, located in the Ladakh region of the J&K state of India, is a high-altitude cold desert valley, 3,500 m above sea level. Torrential rains delivered to the region by a succession of mesoscale convective systems moving of the region triggered extensive flooding

Rasmussen and Houze, 2012

A flash-flooding storm at the steep edge of high terrain – Rasmussen and Houze, 2012

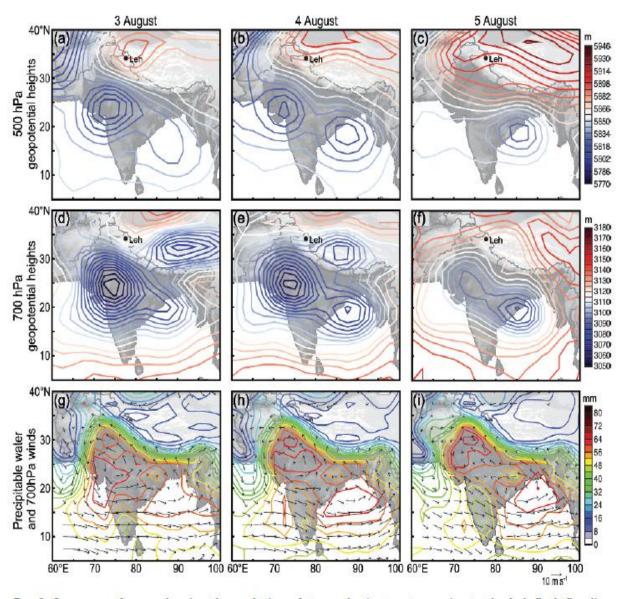


Fig. 2. Sequence of maps showing the evolution of atmospheric structure prior to the Leh flash-flooding event. One-day-average geopotential height field (m) of the (top) 500- and (middle) 700-mb surface. (bottom) Contours of vertically integrated precipitable water (mm) and 700-mb wind vectors. Note that the data source and topographic scale for (a)-(i) are the same as in Fig. Ic.

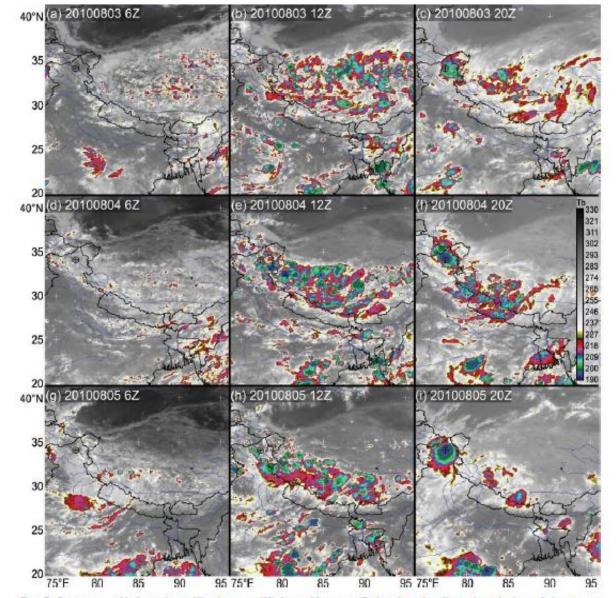
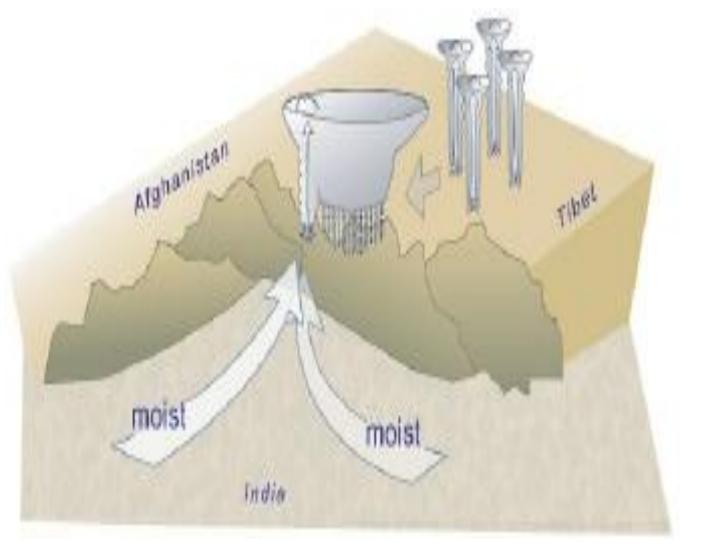
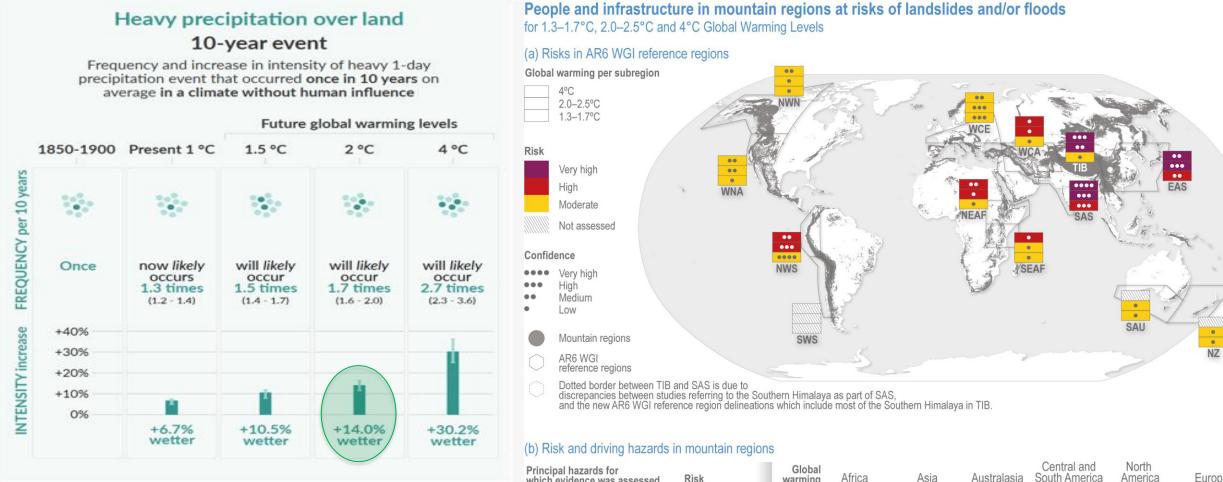



Fig. 5. Sequence of infrared satellite images (K) from Meteosot-7 showing the diurnal evolution of the storm systems that resulted in the Leh flood. Each row shows data for a different sequential day leading up to the Leh flood (3-5 Aug) and each column shows a different time of day (0600, 1200, and 2000 UTC). The location of Leh is indicated (circled cross) on each map.



CONCLUSIONS: Our investigation into the meteorological setting of the catastrophic flash flood in Leh, India reveals that the event was related to the highly unusual development of **mesoscale convective systems from diurnally generated convective cells** forming over the Tibetan Plateau within the context of a persistent 500-mb flow pattern directing the MCSs over Leh and forcing moisture up the slope of the Himalayas in the Leh region.

Conceptual model demonstrating key meteorological elements that led to the anomalous flash flooding case in Leh. Convective cells on the Tibetan Plateau organize upscale and propagate to the west. The MCS on the edge of the Himalayas taps into the upslope low-level mositure.

Rasmussen and Houze, 2012

Projected changes in extremes are larger in frequency and intensity with every additional increment of global warming

Every additional 0.5°C of global warming causes clearly discernible increases in the intensity & frequency of heavy precipitation (*high confidence*)

- 1. Challenges in Modeling & Attribution :
 - Difficulty in attributing extreme events directly to climate change
 - Limitations of climate models: Intensity and location of heavy monsoon rainfall, Convective systems in South Asia, Anomalous SSTs
- 2. Monsoon System Complexity
 - Asian monsoon influenced by multiple climate modes: ENSO, IOD, PDV,
 - High variability across time and space complicates prediction
 - Uncertainty in how modes like El Niño / La Niña respond to global warming.
- 3. Inadequate Data Coverage
 - Sparse historical and in-situ data in remote areas (e.g., Himalayas).
 - Limited real-time monitoring of: Soil moisture, Glacier melt
 - Gaps in satellite and gridded data for high-mountain regions.

Recommendations to address scientific and data gaps to improve extreme and compound event prediction and projections over the Third Pole region

RECOMMENDATIONS

17 **High Mountain** Monitoring land surface processes Asia monitoring Glacier mass balance, glacial lakes, river flows Monitoring High-resolution datasets e.g.: km scale gridded, near real-time soil moisture Remote sensing and precipitation datasets and atmospheric variables (temperature, humidity, winds, radiation) Multi-hazard Early Ocean monitoring 181 Warning Systems Surface and sub-surface measurement e.g.: tide gauges, buoys, autonomous vehicles to measure

Impact based forecasting, expand community-based systems

water cycle

Teleconnections ENSO-Monsoon, IOD-Monsoon coupling

Satellite-based observations of Essential Climate Variables (ECVs)

e.g. by ICIMOD, AI-driven early warning systems that integrate real-time data from diverse sourcesheatwaves, extreme sea levels, etc.

Model improvement High resolution weather and climate simulations (e.g. grid size < 10km resolution), enhanced hydrological models, large ensemble simulations.

Processes, Data, and Models

ocean heat content, marine heatwaves, extreme sea levels, etc.

...

Open Data

Data sharing between

the Hi-RISK platform

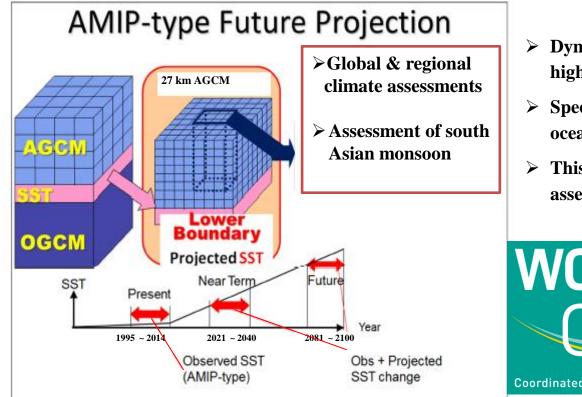
Asian countries such as

Process understanding Mechanisms and feedbacks driving compound extremes in Asia e.g.: atmosphere-cryosphere interactions, soil moisturetemperature feedbacks tropicalextratropical interactions, marine heatwave-tropical cyclone interactions

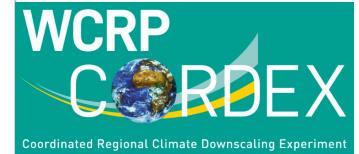
Machine Learning/ Artificial Intelligence Analysis of historical compound events, compound event detection, compound event risk modeling, data assimilation, model bias correction

Collaboration and Capacity Building

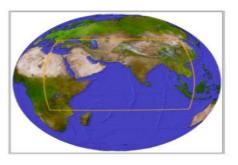
Transboundary collaboration Joint research projects, regional workshops, knowledge exchange platforms linking Asian universities and institutions. Collaboration on Early Warning Systems



Capacity building programmes Modelling, data analysis, risk assessment. Advanced Modeling Workshops


Krishnan et al 2025

High resolution modelling initiatives at IITM to better predict and project weather and climate extremes


High resolution climate projections using IITM-ESM AGCM (T574, ~27 Km)

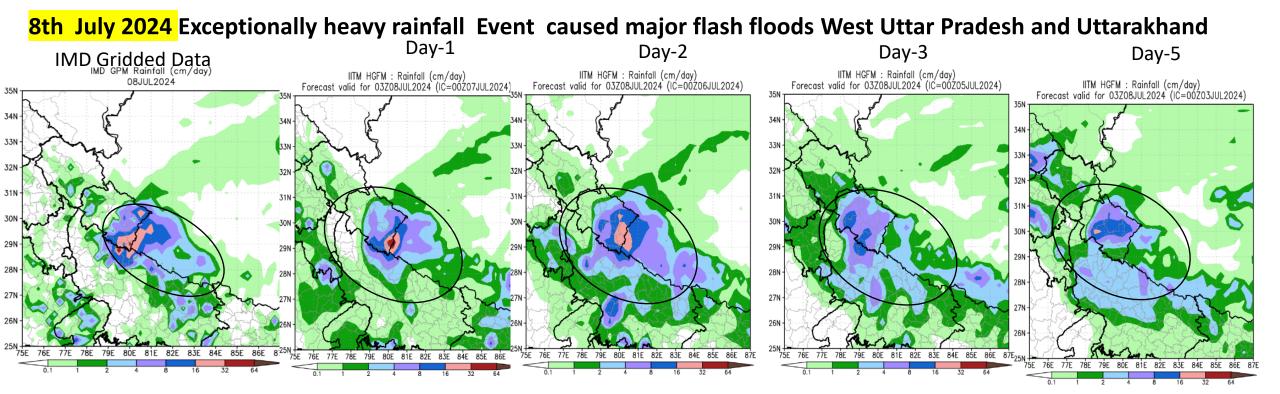
- Dynamical downscaling of IITM-ESM v2 CMIP6 historical simulation using the high-resolution (27 km grid) atmospheric component of IITM-ESM v2
- Spectral model with reasonable good skill in simulating Indian and Pacific oceanic teleconnections with Indian monsoon
- This high-resolution climate simulation will be able to contribute towards various assessments for the country, along with contributing to CORDEX South Asia.

Region 6: South Asia

Courtesy: Dr Sabin, IITM

The following experiments are completed or underway as part of this programme

1981-2014


2081-2100

2081-2100

- 1. Historical
- 2. SSP 2-4.5
- 3. SSP 2-4.5Aero
- 4. SSP 2-4.5GHG 2081-2100
- SSP 5-8.5 also will be completed along with this

Km-scale forecast model: Bharat Forecast System

- Bharat Forecast System is a triangular-cubic octahedral (TCO) grid based global forecast model developed by IITM
- This grid enhances resolution specifically over the tropics, and the current version of the model runs at the horizontal resolution of about 6 km over the tropics.

BharatFS Exceptionally well predicted the rainfall amount and location

Courtesy: Dr Medha Deshpande, IITM

- Himalayan floods are devastating due to the interplay of monsoon dynamics, mid-latitude systems and cryospheric changes—all worsened by climate change.
- 2022 Indus Basin flood exemplifies compound hazards: heat-induced glacial melt, sustained heavy rainfall, and saturated soils amplified by La Niña and IOD.
- Scientific Gaps:
 - Inadequate model skill in simulating monsoon meso-scale processes and teleconnections.
 - Sparse high-altitude observational data (precipitation, glacier melt, soil moisture).
 - Limited understanding of climate driver interactions (e.g., ENSO, IOD)
- Recommendations:
 - Invest in Km-scale climate models (CORDEX, TPCORDEX)
 - Strengthen Himalayan observation networks and early warning systems.
 - Prioritize regional collaboration and integrated compound risk governance.

